Document De Treball Xreap2015-01 Estimating Extreme Value Cumulative Distribution Functions Using Bias-corrected Kernel Approaches

نویسندگان

  • Catalina Bolancé
  • Zuhair Bahraoui
  • Ramon Alemany
چکیده

We propose a new kernel estimation of the cumulative distribution function based on transformation and on bias reducing techniques. We derive the optimal bandwidth that minimises the asymptotic integrated mean squared error. The simulation results show that our proposed kernel estimation improves alternative approaches when the variable has an extreme value distribution with heavy tail and the sample size is small.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DOCUMENT DE TREBALL XREAP2012-19 Nonparametric estimation of Value-at-Risk

A method to estimate an extreme quantile that requires no distributional assumptions is presented. The approach is based on transformed kernel estimation of the cumulative distribution function (cdf). The proposed method consists of a double transformation kernel estimation. We derive optimal bandwidth selection methods that have a direct expression for the smoothing parameter. The bandwidth ca...

متن کامل

Multistep kernel regression smoothing by boosting

In this paper we propose a simple multistep regression smoother which is constructed in a boosting fashion, by learning the Nadaraya–Watson estimator with L2Boosting. Differently from the usual approach, we do not focus on L2Boosting for ever. Given a kernel smoother as a learner, we explore the boosting capability to build estimators using a finite number of boosting iterations. This approach ...

متن کامل

The efficiency of bias-corrected estimators for nonparametric kernel estimation based on local estimating equations

Stuetzle and Mittal for ordinary nonparametric kernel regression and Kauermann and Tutz for nonparametric generalized linear model kernel regression constructed estimators with lower order bias than the usual estimators without the need for devices such as second derivative estimation and multiple bandwidths of di erent order We derive a similar estimator in the context of local multivariate es...

متن کامل

Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring

In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...

متن کامل

A comparison of extreme value theory approaches for determining value at risk

This paper compares a number of different extreme value models for determining the value at risk of three LIFFE futures contracts. A semi-nonparametric approach is also proposed where the tail events are modeled using the Generalised Pareto Distribution and normal market conditions are captured by the empirical distribution function. The value at risk estimates from this approach are compared w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015